1,842 research outputs found

    Correlation functions of small-scale fluctuations of the interplanetary magnetic field

    Full text link
    The Interplanetary Magnetic Field shows complex spatial and temporal variations. Single spacecraft measurements reveal only a one dimensional section of this rich four dimensional phenomenon. Multi-point measurements of the four Cluster spacecraft provide a unique tool to study the spatiotemporal structure of the field. Using Cluster data we determined three dimensional correlation functions of the fluctuations. By means of the correlation function one can describe and measure field variations. Our results can be used to verify theoretical predictions, to understand the formation and nature of solar wind turbulence. We found that the correlation length varies over almost six orders of magnitude. The IMF turbulence shows significant anisotropy with two distinct populations. In certain time intervals the ratio of the three axes of the correlation ellipse is 1/2.2/6 while in the remaining time we found extremely high correlation along one axis. We found favoured directions in the orientation of the correlation ellipsoids.Comment: accepted to Solar Physics on June 14, 2010. 10 pages, 8 figure

    Displaced but not replaced: the impact of e-learning on academic identities in higher education.

    Get PDF
    Challenges facing universities are leading many to implement institutional strategies to incorporate e-learning rather than leaving its adoption up to enthusiastic individuals. Although there is growing understanding about the impact of e-learning on the student experience, there is less understanding of academics’ perceptions of e-learning and its impact on their identities. This paper explores the changing nature of academic identities revealed through case study research into the implementation of e-learning at one UK university. By providing insight into the lived experiences of academics in a university in which technology is not only transforming access to knowledge but also influencing the balance of power between academic and student in knowledge production and use, it is suggested that academics may experience a jolt to their ‘trajectory of self’ when engaging with e-learning. The potential for e-learning to prompt loss of teacher presence and displacement as knowledge expert may appear to undermine the ontological security of their academic identity

    Fuzzy Rings in D6-Branes and Magnetic Field Background

    Full text link
    We use the Myers T-dual nonabelin Born-Infeld action to find some new nontrivial solutions for the branes in the background of D6-branes and Melvin magnetic tube field. In the D6-Branes background we can find both of the fuzzy sphere and fuzzy ring solutions, which are formed by the gravitational dielectric effect. We see that the fuzzy ring solution has less energy then that of the fuzzy sphere. Therefore the fuzzy sphere will decay to the fuzzy ring configuration. In the Melvin magnetic tube field background there does not exist fuzzy sphere while the fuzzy ring configuration may be formed by the magnetic dielectric effect. The new solution shows that D0D_0 propagating in the D6-branes and magnetic tube field background may expand into a rotating fuzzy ring. We also use the Dirac-Born-Infeld action to construct the ring configuration from the D-branes.Comment: Latex, 15 pages, detailed comments in section 2, typos correcte

    Regge and Okamoto symmetries

    Full text link
    We will relate the surprising Regge symmetry of the Racah-Wigner 6j symbols to the surprising Okamoto symmetry of the Painleve VI differential equation. This then presents the opportunity to give a conceptual derivation of the Regge symmetry, as the representation theoretic analogue of the author's previous derivation of the Okamoto symmetry. [The resulting derivation is quite simple, so it would be surprising if it has not been previously observed. Any references would be appreciated!]Comment: 14 page

    Ancient expansion of the Hox cluster in Lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation

    Get PDF
    Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes) has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina) plus a caddisfly outgroup (Glyphotaelius pellucidus) to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths). Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria), with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks

    Prognostic Role of Cardiac Power Index in Ambulatory Patients with Advanced Heart Failure

    Get PDF
    BACKGROUND: Cardiac pump function is often quantified by left ventricular ejection fraction by various imaging modalities. As the heart is commonly conceptualized as a hydraulic pump, cardiac power describes the hydraulic function of the heart. We aim to describe the prognostic value of resting cardiac power index (CPI) in ambulatory patients with advanced heart failure. METHODS AND RESULTS: We calculated CPI in 495 sequential ambulatory patients with advanced heart failure who underwent invasive haemodynamic assessment with longitudinal follow-up of adverse outcomes (all-cause mortality, cardiac transplantation, or ventricular assist device placement). The median CPI was 0.44 W/m(2) (interquartile range 0.37, 0.52). Over a median of 3.3 years, there were 117 deaths, 104 transplants, and 20 ventricular assist device placements in our cohort. Diminished CPI (\u3c0.44 W/m(2) ) was associated with increased adverse outcomes [hazard ratio (HR) 2.4, 95% confidence interval (CI) 1.8-3.1, P \u3c 0.0001). The prognostic value of CPI remained significant after adjustment for age, gender, pulmonary capillary wedge pressure, cardiac index, pulmonary vascular resistance, left ventricular ejection fraction, and creatinine [HR 1.5, 95% CI 1.03-2.3, P = 0.04). Furthermore, CPI can risk stratify independently of peak oxygen consumption (HR 2.2, 95% CI 1.4-3.4, P = 0.0003). CONCLUSION: Resting cardiac power index provides independent and incremental prediction in adverse outcomes beyond traditional haemodynamic and cardio-renal risk factors

    Prognostic Role of Pulmonary Arterial Capacitance in Advanced Heart Failure

    Get PDF
    Background—Right ventricular (RV) dysfunction frequently occurs and independently prognosticates in left-sided heart failure. It is not clear which RV afterload measure has the greatest impact on RV function and prognosis. We examined the determinants, prognostic role, and response to treatment of pulmonary arterial capacitance (PAC, ratio of stroke volume over pulmonary pulse pressure), in relation to pulmonary vascular resistance (PVR) in heart failure. Methods and Results—We reviewed 724 consecutive patients with heart failure who underwent right heart catheterization between 2000 and 2005. Changes in PAC were explored in an independent cohort of 75 subjects treated for acute decompensated heart failure. PAC showed a strong inverse relation with PVR (r=−0.64) and wedge pressure (r=−0.73), and provides stronger prediction of significant RV failure than PVR (area under the curve ROC 0.74 versus 0.67, respectively, P=0.003). During a mean follow-up of 3.2±2.2 years, both lower PAC (P\u3c0.0001) and higher PVR (P\u3c0.0001) portend more adverse clinical events (all-cause mortality and cardiac transplantation). In multivariate analysis, PAC (but not PVR) remains an independent predictor (Hazard ratio=0.92 [95% CI: 0.84–1.0, P=0.037]). Treatment of heart failure resulted in a decrease in PVR (270±165 to 211±88 dynes·s–1·cm–5, P=0.002), a larger increase in PAC (1.65±0.64 to 2.61±1.42 mL/mm Hg, P\u3c0.0001), leading to an increase in pulmonary arterial time constant (PVR×PAC) (0.29±0.12 to 0.37±0.15 second, P\u3c0.0001). Conclusions—PAC bundles the effects of PVR and left-sided filling pressures on RV afterload, explaining its strong relation with RV dysfunction, poor long-term prognosis, and response to therapy

    Optimizing tuning masses for helicopter rotor blade vibration reduction including computed airloads and comparison with test data

    Get PDF
    The development and validation of an optimization procedure to systematically place tuning masses along a rotor blade span to minimize vibratory loads are described. The masses and their corresponding locations are the design variables that are manipulated to reduce the harmonics of hub shear for a four-bladed rotor system without adding a large mass penalty. The procedure incorporates a comprehensive helicopter analysis to calculate the airloads. Predicting changes in airloads due to changes in design variables is an important feature of this research. The procedure was applied to a one-sixth, Mach-scaled rotor blade model to place three masses and then again to place six masses. In both cases the added mass was able to achieve significant reductions in the hub shear. In addition, the procedure was applied to place a single mass of fixed value on a blade model to reduce the hub shear for three flight conditions. The analytical results were compared to experimental data from a wind tunnel test performed in the Langley Transonic Dynamics Tunnel. The correlation of the mass location was good and the trend of the mass location with respect to flight speed was predicted fairly well. However, it was noted that the analysis was not entirely successful at predicting the absolute magnitudes of the fixed system loads

    On the spherical-axial transition in supernova remnants

    Full text link
    A new law of motion for supernova remnant (SNR) which introduces the quantity of swept matter in the thin layer approximation is introduced. This new law of motion is tested on 10 years observations of SN1993J. The introduction of an exponential gradient in the surrounding medium allows to model an aspherical expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR, SN1987a, are modeled. In the case of SN1987a the three observed rings are simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics & Space Science in the year 201

    Post-Newtonian SPH calculations of binary neutron star coalescence. II. Binary mass ratio, equation of state, and spin dependence

    Full text link
    Using our new Post-Newtonian SPH (smoothed particle hydrodynamics) code, we study the final coalescence and merging of neutron star (NS) binaries. We vary the stiffness of the equation of state (EOS) as well as the initial binary mass ratio and stellar spins. Results are compared to those of Newtonian calculations, with and without the inclusion of the gravitational radiation reaction. We find a much steeper decrease in the gravity wave peak strain and luminosity with decreasing mass ratio than would be predicted by simple point-mass formulae. For NS with softer EOS (which we model as simple Γ=2\Gamma=2 polytropes) we find a stronger gravity wave emission, with a different morphology than for stiffer EOS (modeled as Γ=3\Gamma=3 polytropes as in our previous work). We also calculate the coalescence of NS binaries with an irrotational initial condition, and find that the gravity wave signal is relatively suppressed compared to the synchronized case, but shows a very significant second peak of emission. Mass shedding is also greatly reduced, and occurs via a different mechanism than in the synchronized case. We discuss the implications of our results for gravity wave astronomy with laser interferometers such as LIGO, and for theoretical models of gamma-ray bursts (GRBs) based on NS mergers.Comment: RevTeX, 38 pages, 24 figures, Minor Corrections, to appear in Phys. Rev.
    • 

    corecore